计算物理作业7

杨远青 22300190015 CompPhys 24

2024年11月22日

在尝试抵御 GPT 的诱惑!

1 题目 1: 单摆运动积分

1.1 题目描述

Write a code to numerically solves the motion of a simple pendulum using **Euler's method**, **midpoint method**, **RK4 method** and **Euler-trapezoidal method** (implement these methods by yourself). Plot the angle and total energy as a function of time. Explain the results.

1.2 程序描述

本程序内置了一个 Pendulum 类,具有绳长,质量(小球视作质点),初始角度,初始角速度,重力加速度等属性。通过调用 Pendulum 类的方法,可以使用 Euler's method, midpoint method, RK4 method 和 Euler-trapezoidal method 来求解简单摆的运动,会返回角度与角速度的 numpy 数组。类的方法还包括辅助的导数计算,即演化方程

$$\begin{split} \frac{d\theta}{dt} &= \omega, \\ \frac{d\omega}{dt} &= -\frac{g}{L}\sin(\theta), \end{split}$$

与总能量采集方法

$$E = T + V = \frac{1}{2}m(\omega L)^2 + mgL(1 - \cos\theta)$$

主程序还有内置的解析解、误差计算与用户输入采集函数,其中解析解借助了 scipy.special 的雅可比椭圆积分 sn,cn,模数 $k = \sin(\theta_0/2)$,固有频率 $\omega_0 = \sqrt{\frac{g}{L}}$,所以对大角度的摆动也是精确的。

$$\theta(t) = 2 \arcsin\left(k \operatorname{sn}(\omega_0 t + \frac{\pi}{2}, k^2)\right)$$
$$\omega(t) = \frac{2k\omega_0 \operatorname{cn}(\omega_0 t + \frac{\pi}{2}, k^2)}{\sqrt{1 - k^2 \operatorname{sn}^2(\omega_0 t + \frac{\pi}{2}, k^2)}}$$

1.2.1 欧拉法 (Euler's Method)

$$\theta_{i+1} = \theta_i + h \cdot \frac{d\theta}{dt} \Big|_{t_i} \quad \omega_{i+1} = \omega_i + h \cdot \frac{d\omega}{dt} \Big|_{t_i}$$

计算中点值:
$$\theta_{\text{mid}} = \theta_i + \frac{h}{2} \cdot \frac{d\theta}{dt}\Big|_{t_i}, \quad \omega_{\text{mid}} = \omega_i + \frac{h}{2} \cdot \frac{d\omega}{dt}\Big|_{t_i}$$

使用中点斜率更新: $\theta_{i+1} = \theta_i + h \cdot \frac{d\theta}{dt}\Big|_{\text{mid}}, \quad \omega_{i+1} = \omega_i + h \cdot \frac{d\omega}{dt}\Big|_{\text{mid}}$

1.2.3 四阶龙格-库塔法 (RK4 Method)

第一步
$$(k_1)$$
: $k_1^{\theta} = \frac{d\theta}{dt}\Big|_{t_i,\theta_i,\omega_i}, \quad k_1^{\omega} = \frac{d\omega}{dt}\Big|_{t_i,\theta_i,\omega_i};$
第二步 (k_2) : $k_2^{\theta} = \frac{d\theta}{dt}\Big|_{t_i+\frac{h}{2},\theta_i+\frac{h}{2}k_1^{\theta},\omega_i+\frac{h}{2}k_1^{\omega}}, \quad k_2^{\omega} = \frac{d\omega}{dt}\Big|_{t_i+\frac{h}{2},\theta_i+\frac{h}{2}k_1^{\theta},\omega_i+\frac{h}{2}k_1^{\omega}};$
第三步 (k_3) : $k_3^{\theta} = \frac{d\theta}{dt}\Big|_{t_i+\frac{h}{2},\theta_i+\frac{h}{2}k_2^{\theta},\omega_i+\frac{h}{2}k_2^{\omega}}, \quad k_3^{\omega} = \frac{d\omega}{dt}\Big|_{t_i+\frac{h}{2},\theta_i+\frac{h}{2}k_2^{\theta},\omega_i+\frac{h}{2}k_2^{\omega}};$
第四步 (k_4) : $k_4^{\theta} = \frac{d\theta}{dt}\Big|_{t_i+h,\theta_i+hk_3^{\theta},\omega_i+hk_3^{\omega}}, \quad k_4^{\omega} = \frac{d\omega}{dt}\Big|_{t_i+h,\theta_i+hk_3^{\theta},\omega_i+hk_3^{\omega}}, ;$
更新公式: $\theta_{i+1} = \theta_i + \frac{h}{6}\left(k_1^{\theta} + 2k_2^{\theta} + 2k_3^{\theta} + k_4^{\theta}\right), \quad \omega_{i+1} = \omega_i + \frac{h}{6}\left(k_1^{\omega} + 2k_2^{\omega} + 2k_3^{\omega} + k_4^{\omega}\right).$

1.2.4 欧拉-梯形法 (Euler-Trapezoidal Method)

预测:
$$\theta_{\text{pred}} = \theta_i + h \cdot \frac{d\theta}{dt}\Big|_{t_i}, \quad \omega_{\text{pred}} = \omega_i + h \cdot \frac{d\omega}{dt}\Big|_{t_i}$$

校正: $\theta_{i+1} = \theta_i + \frac{h}{2}\left(\frac{d\theta}{dt}\Big|_{t_i} + \frac{d\theta}{dt}\Big|_{\text{pred}}\right) \quad \omega_{i+1} = \omega_i + \frac{h}{2}\left(\frac{d\omega}{dt}\Big|_{t_i} + \frac{d\omega}{dt}\Big|_{\text{pred}}\right)$

请在 Problem_1/src 目录下运行python -u pendulum.py 查看结果,需安装辅助计算的 numpy,scipy 库与绘图的 matplotlib 库,其中 scipy 库请使用 1.13 以上版本,旧版本的特殊函数可能不在 scipy.special 模块中。运行 程序后,会提示输入求解参数,用户可以键入回车选择使用默认值,或自定义参数。

1.3 伪代码

Powered by IAT_EX pseudocode generator

Algorithm 1: Euler Method for Simple Harmonic Oscillator	
Input: h : Time step size (float), N : Total number of steps (int)	
Output: θ : Angle array (rad), ω : Angular velocity array (rad/s)	
1 Initialize $\theta[0] \leftarrow \theta_0, \omega[0] \leftarrow \omega_0$;	<pre>// Set initial conditions</pre>
2 for $i \leftarrow 0$ to $N-1$ do	
3 Compute $(\dot{\theta}, \dot{\omega}) \leftarrow \texttt{Derivatives}(\theta[i], \omega[i]);$	
4 Update $\theta[i+1] \leftarrow \theta[i] + h \cdot \dot{\theta}, \omega[i+1] \leftarrow \omega[i] + h \cdot \dot{\omega};$	// Update values
5 end	
6 return $ heta, \omega$;	<pre>// Return results as arrays</pre>

Alg	gorithm 2: Midpoint Method for Simple Harmonic Oscillator					
Ι	nput: h : Time step size (float), N : Total number of steps (int)					
C	Output: θ : Angle array (rad), ω : Angular velocity array (rad/s)					
1 I	1 Initialize $\theta[0] \leftarrow \theta_0, \omega[0] \leftarrow \omega_0$; // Set initial conditions					
2 f	$\mathbf{pr} \ i \leftarrow 0 \ \mathbf{to} \ N - 1 \ \mathbf{do}$					
3	Compute $(\dot{ heta}, \dot{\omega}) \leftarrow \texttt{Derivatives}(\theta[i], \omega[i])$;	<pre>// Slope at initial point</pre>				
4	Compute $\theta_{\text{mid}} \leftarrow \theta[i] + 0.5 \cdot h \cdot \dot{\theta}, \omega_{\text{mid}} \leftarrow \omega[i] + 0.5 \cdot h \cdot \dot{\omega};$	<pre>// Midpoint values</pre>				
5	Compute $(\dot{\theta}_{\mathrm{mid}}, \dot{\omega}_{\mathrm{mid}}) \leftarrow \texttt{Derivatives}(\theta_{mid}, \omega_{mid})$;	<pre>// Slope at midpoint</pre>				
6	Update $\theta[i+1] \leftarrow \theta[i] + h \cdot \dot{\theta}_{mid}, \omega[i+1] \leftarrow \omega[i] + h \cdot \dot{\omega}_{mid}$;	<pre>// Update values</pre>				
7 e	nd					
8 r	eturn θ, ω ;	// Return results as arrays				
Alg	gorithm 3: RK4 Method for Simple Harmonic Oscillator					
Ι	nput: h : Time step size (float), N : Total number of steps (int)					
C	Dutput: θ : Angle array (rad), ω : Angular velocity array (rad/s)					
1 I	nitialize $\theta[0] \leftarrow \theta_0, \omega[0] \leftarrow \omega_0$;	<pre>// Set initial conditions</pre>				
2 f	$\mathbf{pr} \ i \leftarrow 0 \ \mathbf{to} \ N - 1 \ \mathbf{do}$					
3	Compute $(k_1^{\theta}, k_1^{\omega}) \leftarrow \texttt{Derivatives}(\theta[i], \omega[i])$;	// Stage 1				
4	Compute $(k_2^{\theta}, k_2^{\omega}) \leftarrow \text{Derivatives}(\theta[i] + 0.5 \cdot h \cdot k_1^{\theta}, \omega[i] + 0.5 \cdot h \cdot k_1^{\omega})$;	// Stage 2				
5	Compute $(k_3^{\theta}, k_3^{\omega}) \leftarrow \texttt{Derivatives}(\theta[i] + 0.5 \cdot h \cdot k_2^{\theta}, \omega[i] + 0.5 \cdot h \cdot k_2^{\omega})$;	// Stage 3				
6	Compute $(k_4^{\theta}, k_4^{\omega}) \leftarrow \texttt{Derivatives}(\theta[i] + h \cdot k_3^{\theta}, \omega[i] + h \cdot k_3^{\omega})$;	// Stage 4				
7	7 Update $\theta[i+1] \leftarrow \theta[i] + \frac{h}{6} \cdot (k_1^{\theta} + 2 \cdot k_2^{\theta} + 2 \cdot k_3^{\theta} + k_4^{\theta});$					
8	Update $\omega[i+1] \leftarrow \omega[i] + \frac{h}{6} \cdot (k_1^{\omega} + 2 \cdot k_2^{\omega} + 2 \cdot k_3^{\omega} + k_4^{\omega});$					
9 e	nd					
10 r	eturn $ heta, \omega$;	// Return results as arrays				
Alg	gorithm 4: Euler-Trapezoidal Method for Simple Harmonic Oscillator					
Ι	nput: h : Time step size (float), N : Total number of steps (int)					
Output: θ : Angle array (rad), ω : Angular velocity array (rad/s)						
1 Initialize $\theta[0] \leftarrow \theta_0, \omega[0] \leftarrow \omega_0$; // Set initial conditions						
2 for $i \leftarrow 0$ to $N-1$ do						
3	Compute $(\dot{\theta}, \dot{\omega}) \leftarrow \texttt{Derivatives}(\theta[i], \omega[i])$;	<pre>// Predictor step slopes</pre>				
4	Compute $\theta_{\text{pred}} \leftarrow \theta[i] + h \cdot \dot{\theta}, \omega_{\text{pred}} \leftarrow \omega[i] + h \cdot \dot{\omega};$	<pre>// Euler predictor values</pre>				
5	Compute $(\dot{\theta}_{\text{pred}}, \dot{\omega}_{\text{pred}}) \leftarrow \texttt{Derivatives}(\theta_{pred}, \omega_{pred})$;	<pre>// Corrector step slopes</pre>				
6	Update $\theta[i+1] \leftarrow \theta[i] + \frac{h}{2} \cdot (\dot{\theta} + \dot{\theta}_{\text{pred}}), \omega[i+1] \leftarrow \omega[i] + \frac{h}{2} \cdot (\dot{\omega} + \dot{\omega}_{\text{pred}})$; // Trapezoidal corrector				
7 e	nd					

1.4 结果示例

s return θ, ω ;

以下结果均使用默认配置,即绳长 L = 1.0m,质量 m = 1.0kg,初始角度 $\theta_0 = 1.0rad$,初始角速度 $\omega_0 = 0rad/s$, 重力加速度 $g = 9.81m/s^2$,时间步长 h = 0.05,总步数 N = 1000,总时间 T = 50.0s。用户可以通过终端输入更改这

// Return results as arrays

些参数。在角速度随角度变化 $\omega - \theta$ 图中,为凸显效果,增加时间步长至 h' = 0.1s,总步数不变,总时间至 T' = 100.0s.

图 1: 终端处理用户输入,此处均采用默认值

图 2: 角度随时间变化 θ-t 图

图 4: 角速度随角度变化 $\omega - \theta$ 图

图 6: 角度与解析解误差随时间变化 $\delta\theta - t$ 图

可以看出,四种方法对比中,RK4方法的能量漂移最小,角度与角速度误差也最小。中点法与欧拉-梯形法次之, 虽然角度、角速度误差在长时间后才逐渐显现,但能量漂移较大。欧拉法误差最大,一段时间后就崩溃。综上,RK4 方法最为精确且稳定。能量漂移图与角速度随角度变化的相空间演化图,均证明其保辛性良好。

2 题目 2: 径向薛定谔方程求解

2.1 题目描述

Write a code to numerically solve the radial Schrödinger equation for

$$\left[-\frac{1}{2}\nabla^2 + V(\mathbf{r})\right]\psi(\mathbf{r}) = E\psi(\mathbf{r}), \quad V(\mathbf{r}) = V(r)$$

1. $V(r) = \frac{1}{r}$ (hydrogen atom)

2. Considering the following potential:

$$V(r) = -\frac{Z_{\rm ion}}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}r_{\rm loc}}\right) + \exp\left[-\frac{1}{2}\left(\frac{r}{r_{\rm loc}}\right)^2\right] \times \left[C_1 + C_2\left(\frac{r}{r_{\rm loc}}\right)^2 + C_3\left(\frac{r}{r_{\rm loc}}\right)^4 + C_4\left(\frac{r}{r_{\rm loc}}\right)^6\right]$$

where erf is the error function. And for Li, you could set:

- $Z_{ion} = 3$
- $r_{\rm loc} = 0.4$
- $C_1 = -14.0093922$
- $C_2 = 9.5099073$
- $C_3 = -1.7532723$
- $C_4 = 0.0834586$

Compute and plot the first three eigenstates. You could find more information about 'how to solve radial Schrödinger equation' and 'use of non-uniform grid (optional)' in the PPT.

Special Note: You may call any library functions for diagonalization.

2.2 程序描述

本程序拥有四个模块:utils,solver,analysis,visualization,分别为工具函数和配置参数模块、数值求解算法 模块、结果分析和处理模块与可视化处理模块。主程序入口 main 中有主求解器类 RadialSchrodingerSolver,其计算 配置与非均匀网格由 utils 中的 SolverConfig 类与 RadialGrid 类指定;势能函数调用 utils 中的 Potential 基类,其中有本题设定的氢原子库仑势与锂原子局域势,utils 中还有一些辅助工具,在此不一一列举。主求解器 的核心逻辑依赖绑定的求解器实例 ShootingSolver 或 FiniteDifferenceSolver¹.主求解器还从 analysis 模 块绑定了波函数处理器 WavefunctionProcessor,负责计算导数、分析波函数渐进行为、根据不同角量子数由邻 域外推原点附近的波函数奇异值、归一化处理等;能量分析器 EnergyAnalyzer,负责比较能级与理论值差异;收

¹Numerov 实在没时间写了 qwq

敛性分析器 ConvergenceAnalyzer,负责分析不同网格下的收敛性。最后,来自可视化模块 visualization 中的 ResultVisualizer 负责波函数、概率密度与收敛分析结果的可视化。

采用的非均匀网格为指数网格, 共 $j_{\text{max}} + 1$ 个点, 参数 r_p 满足 $r_{\text{max}} = r(j_{\text{max}})$, 控制 $j_{\text{max}}\delta = 6$

$$r(j) = r_p(\exp(j\delta) - 1) + r_{min}, \quad j = 0, 1, 2, \cdots, j_{\max}$$

在本题单位制 h = m = a = 1 下,一维径向方程化为(注意课件上漏了个 2)

$$u''(r) = 2(E - V_{\text{eff}}(r))u(r)$$

此时做变换

$$u(j) = v(j) \exp(j\delta/2)$$

可将方程改写为

$$v''(j) - \frac{\delta^2}{4}v(j) = 2r_p^2\delta^2 \exp(2j\delta)(E - V_{\text{eff}}(r(j)))v(j)$$

于是我们可以愉快地使用 RK4 求解了(结果示例中验证了 $O(h^4)$ 的全局误差)。一般的打靶法从原点向外积分,但此 处原点附近势能奇异,故改从一个较大的 r_{max} 向内积分。但考虑到在 l 给定的情况下,不同能级 n 对应的演化方程 相同,很可能出现求解不到指定态,或者无法收敛的情形。课件最后的参考文献²指出,可以对 u(r) 施加 (n-l-1) 的 节点约束,以确保求解到正确的态。但他似乎采取加一个较大的惩罚系数,如 le3*(nodes-target),这样会使得一般 的求根器容易出错,我选择改用 $(nodes-target)^2$,使得求解更平稳,并先在求解区间内粗扫描,再在 r_{min} 最小的值 附近使用 scipy.optimize.minimize 的 1-bfgs-b 求解,在测试中发现,一些边界奇异的态需要该用 Nelder-Mead 无导数优化器,但效率与精度均下降。为了减少奇异解的发生,我还添加了波函数渐进行为约束与连续性约束,均要 求在接近原点附近的几个点满足

$$\frac{u'(r)}{u(r)} \approx \frac{l+1}{r}$$

不过前者是使用 $[(\frac{d}{dr}\ln u) \cdot r - (l+1)]^2$,后者直接考虑 $[u'(r) - \frac{l+1}{r}u(r)]^2$ 作为权重函数,这样可以保证在原点附近的 波函数行为符合物理要求。加上节点数要求与目标 $u(r_{\min})$ 的要求,总共四个目标函数可以加权求和作为最小化的目标,经其约束的方法大大提高了求解的稳定性与收敛性。

在有限差分法中,直接将将方程两侧除以 $r_p^2 \delta^2 \exp(2j\delta)$ 可以按照按照普通本征值问题求解,但实际操作发现这样的数值稳定性不太好。本程序进行两处改进,首先将 j = 0 的近核点从方程移除,其实保留也能求解,但因为该变换限制了第一个点与第二个点较近,且离心势能的 $\frac{1}{r^2}$ 奇异会带来一些麻烦,如图7所示 而我们求解的 u 总是在第一个点趋于 0 的,所以去掉可以提高数值稳定性。其次,我们原先的方程也是可以直接求解的,属于广义本征值问题 **Au** = λ **Bu**,而 scipy 内置的库对其迭代有优化,可加快收敛,只不过要构造两个系数矩阵。借助本题氢原子与类氢原子的能级 $E_n \approx \frac{1}{n^2}$ 趋势,我还使用了 shift-invert 模式,即在基态的 $\frac{1}{n^2}$ 附近找寻激发态³,提高了求解速度,但在已知的 3p 态测试中,经常导致漏掉该态直接找寻 4p 态。

可在 Problem_2/src/radial_schrodinger 目录下运行pip install -e . 临时安装本包,然后导入或直接运行python main.py,如果不安装,也可以在 Problem_2/src 目录下运行python radial_schrodinger.py,均支持命令行参数,请加上-h 查看帮助信息。助教老师还可以借助Sphinx.html⁴查看本包的文档。

 $^{^2 {\}rm Solving}$ The Stationary One Dimensional Schrödinger Equation With The Shooting Method

³令人匪夷所思的是,早期版本中 $j_{max} < 1000$ 的网格基本都能收敛求解,但不知改动了哪里,现在在一些稍小网格数测试中也经常不收敛。 ⁴Github Pages 上的静态版本控制格式有些问题,本地文档可正常使用

<pre>def construct_hamiltonian(self):</pre>		print(H_te	est)	
"""构建哈密顿量矩阵,对应方程:	Г217	√ 0.0s		Pvthon
$-[v''(j) - v(j)\delta^{2}/4]/(2\delta^{2}rp^{2}e^{(2\delta j)}) + v(j)$				
$V_{\text{eff}} = EV(j)$		(0, 0)	-252.1280372360556	
		(0, 1)	-1.0	
N = len(self.) - I #]max+ITR, 去捍最后一TR		(1, 0)	-1.0	
$H = lll_matrix((N, N))$		(1, 1)	1.9280926160509535	
		(1, 2)	-1.0	
# 为了数值稳定性,每个万程同乘 20 ² rp ² e ² (20)		(2, 1)	-1.0	
# 这样方程变成:-lv''(j) - v(j)δ²/4] + 2δ²rp²e^		(2, 2)	1.96372079826546	
$(2\delta j)v(j)V_eff(j) = E[2\delta^2 rp^2 e^{2\delta j}]v(j)$		(2,3)	-1.0	
		(3, 2)	-1.0	
for i in range(N):		(3, 3)	1.9755971954334994	
exp_factor = ((3, 4)	-1.0	
2 * self.delta**2 * self.r_p**2 * np.		(4, 3)	-1.0	
<pre>exp(2 * self.delta * self.j[i])</pre>		(4, 4)	1.9815343852906082	
		(4, 5)	-1.0	
		(5, 4)	-1.0	
# 动能项系数		(5,5)	1.9850956827960027	
if i > 0:		(5,6)	-1.0	
H[i, i − 1] = −1 # v(j−1)系数		(6, 5)	-1.0	
H[i, i] = 2 + self.delta**2 / 4 # v(j)系数		(6, 6)	1.9874689706056279	
if i < N - 1:		(6, 7)	-1.0	
H[i, i + 1] = -1 # v(j+1)系数		(7, 6)	-1.0	
		(7, 7)	1.989163368434465	
# 势能项		(7, 8)	-1.0	
<pre>H[i, i] += exp_factor * self.V_eff(self.j</pre>		(8, 7)	-1.0	
[i])		(8, 8)	1.9904334450184151	
return H.tocsr()		(298, 298)	1.9969384267577557	
		(298, 299)	-1.0	
<pre>def fd_solve(self, n_states: int) -> Tuple[np.</pre>		(299, 298)	-1.0	
ndarray, np.ndarray]:		(299, 299)	1.9969236559544192	

图 7: 去掉第一个点前的病态矩阵

2.3 伪代码

Powered by $\[MT_EX\]$ pseudocode generator

2.3.1 打靶法

Algorithm 5: 1	nward Integration with RK4				
Input: E: Er	ergy (float)				
Output: u: N	Output: <i>u</i> : Normalized wavefunction array (radial grid)				
1 Initialize $v[j_{max}]$	$[ax] \leftarrow 0, v'[j_{\max}] \leftarrow -1;$	<pre>// Boundary conditions</pre>			
2 Set step size h	$\omega \leftarrow -1$;	<pre>// Negative for inward integration</pre>			
3 for $j \leftarrow j_{max}$ -	- 1 to 0 do				
4 Compute ($k_1^v, k_1^{v'}) \leftarrow \texttt{Derivative}(j+1, v[j+1], v'[j+1]);$				
5 Compute ($k_2^v, k_2^{v'}) \gets \texttt{Derivative}(j+0.5, v[j+1]+0.5 \cdot h \cdot k_2) + 0.5 \cdot h \cdot k_2 + 0.5 \cdot h \cdot h \cdot k_2 + 0.5 \cdot h \cdot $	$x_1^v, v'[j+1] + 0.5 \cdot h \cdot k_1^{v'}$);			
6 Compute ($k_3^v, k_3^{v'}) \gets \texttt{Derivative}\left(j + 0.5, v[j+1] + 0.5 \cdot h \cdot k_{j}\right) + 0.5 \cdot h \cdot k_{j}$	$x_2^v, v'[j+1] + 0.5 \cdot h \cdot k_2^{v'}$);			
7 Compute (7 Compute $(k_4^v, k_4^{v'}) \leftarrow \texttt{Derivative}(j, v[j+1] + h \cdot k_3^v, v'[j+1] + h \cdot k_3^{v'});$				
8 Update $v[j] \leftarrow v[j+1] + \frac{h}{6} \cdot (k_1^v + 2 \cdot k_2^v + 2 \cdot k_3^v + k_4^v);$					
9 Update $v'[j] \leftarrow v'[j+1] + \frac{h}{6} \cdot (k_1^{v'} + 2 \cdot k_2^{v'} + 2 \cdot k_3^{v'} + k_4^{v'});$					
10 end					
11 Transform $u \leftarrow$	$-v\cdot \exp(\delta\cdot j/2)$;	<pre>// Transform to radial wavefunction</pre>			
12 Normalize u if $ u > 0$; // Ensure normalization					
13 return u					

Algorithm 6: Objective Function for Energy Optimization		
Output: Error: Objective function value		
1 Compute $u \leftarrow$ IntegrateInward(E) :	// Solve radial Schrödinger equation	
2 Compute $r = u'$:	// Badial positions and derivatives	
3 Step 1: Logarithmic Derivative Error;	// Near $r_{\rm min}$	
4 Compute LogDerError based on u and u ;	// Match theoretical values	
5 Step 2: Node Count Error ;	<pre>// Compare nodes with target</pre>	
6 Compute NodesError based on node difference;		
7 Step 3: Amplitude Error at r_{\min} ;		
s Compute AmpError $\leftarrow u[0]^2$;		
9 Step 4: Continuity Error;		
10 Compute ContError $\leftarrow (u'[0] - \text{TheoreticalDerivative})^2;$		
11 Compute TotalError $\leftarrow w_1 \cdot \text{LogDerError} + w_2 \cdot \text{NodesError} +$	$-w_3 \cdot \text{AmpError} + w_4 \cdot \text{ContError};$	
12 return TotalError		
Algorithm 7: Shooting Method for Energy Eigenvalue and Wa	avefunction	
Input: E_{\min} , E_{\max} : Energy bounds, N_{target} : Target node cou	int	
Output: E_{optimal} : Optimal energy, u : Normalized wavefunction		
1 Set $N_{\text{target}} \leftarrow n - l - 1$ if not specified;		
2 Define weights w_1, w_2, w_3, w_4 for multi-objective terms;		
3 Step 1: Coarse Grid Search;		
4 Generate energy grid $E_{\text{grid}} \in [E_{\min}, E_{\max}];$		
5 Compute errors $\operatorname{Errors}[i] \leftarrow Objective(E_{grid}[i]);$		
6 Set $E_{\text{coarse}} \leftarrow \arg\min(\text{Errors});$		
7 Step 2: Fine Optimization;		
8 Perform optimization Result \leftarrow Minimize(Objective, initial guess E_{coarse}):		
9 if Result.success then		
10 Compute $u_{\text{optimal}} \leftarrow \text{IntegrateInward}(E_{optimal});$		
11 return $E_{optimal}, u_{optimal};$		
12 end		
13 else		
14 Raise(RuntimeError: Optimization did not converge)		
15 end		

Alg	gorithm 8: Construct Hamiltonian Matrix	
(Dutput: <i>H</i> : Sparse Hamiltonian matrix	
1 I	nitialize H as a sparse matrix with size $(N_{\text{reduced}}, N_{\text{reduced}})$;	<pre>// Reduced grid size</pre>
2 f	for $i \leftarrow 0$ to $N_{reduced} - 1$ do	
3	Compute $j_{\text{actual}} \leftarrow i+1$;	// Actual grid index
4	Compute exp_factor $\leftarrow 2 \cdot \delta^2 \cdot r_p^2 \cdot \exp(2 \cdot \delta \cdot j_{\text{actual}});$	
5	$\mathbf{if} i > 0 \mathbf{then}$	
6	Set $H[i, i-1] \leftarrow -1$;	// Kinetic term for $j-1$
7	end	
8	Set $H[i, i] \leftarrow 2 + \frac{\delta^2}{4} + \exp[factor \cdot V_{eff}(j_{actual});$	
9	$\mathbf{if} i < N_{reduced} - 1 \mathbf{then}$	
10	Set $H[i, i+1] \leftarrow -1$;	// Kinetic term for $j+1$
11	end	
12 E	end	
13 r	eturn H	

Algorithm 9: Construct B Matrix

Output: *B*: Sparse matrix for scaling factors

1 Initialize *B* as a sparse matrix with size $(N_{\text{reduced}}, N_{\text{reduced}})$;

2 for $i \leftarrow 0$ to $N_{reduced} - 1$ do

- **3** Compute $j_{\text{actual}} \leftarrow i + 1;$
- $\mathbf{4} \quad \left| \quad \operatorname{Set} \, B[i,i] \leftarrow 2 \cdot \delta^2 \cdot r_p^2 \cdot \exp(2 \cdot \delta \cdot j_{\operatorname{actual}}); \right.$
- $5 \ end$
- 6 return B

Algorithm 10: Finite Difference Solver for Eigenvalues and Eigenstates

Input: n_{states} : Number of eigenstates to compute

Output: (energies, u_states): Eigenvalues and normalized wavefunctions

- 1 Set $H \leftarrow \text{ConstructHamiltonian()};$
- **2** Set $B \leftarrow \text{ConstructB}(H.shape[0]);$

3 Step 1: Compute Ground State;

4 Try

5 Compute $(e_{\text{ground}}, v_{\text{ground}}) \leftarrow \text{linalg.eigsh}(H, k = 1, M = B, which = "SA");$

6 EndTry

- 7 Catch
- 8 Exception e
- 9 EndCatch
- 10 Raise(RuntimeError: Ground state computation failed);
- 11 Set energies $\leftarrow [e_{\text{ground}}], \text{ states } \leftarrow [v_{\text{ground}}];$

12 Step 2: Compute Excited States (if $n_{\text{states}} > 1$);

```
13 for n \leftarrow 2 to n_{states} do
```

Catch

end

EndCatch

Exception e

 $\mathbf{24}$

 $\mathbf{25}$

 $\mathbf{26}$

27

28

// Estimate using $1/n^2$ scaling Compute estimated_e $\leftarrow e_{\text{ground}}/n^2$; $\mathbf{14}$ Set window $\leftarrow |e_{\text{ground}}| \cdot 0.1;$ $\mathbf{15}$ **foreach** *shift* \in {*estimated_e*, *estimated_e* \pm *window*} **do** 16 Try $\mathbf{17}$ Compute $(e, v) \leftarrow \text{linalg.eigsh}(H, k = 1, M = B, \sigma = shift, which = "LM");$ $\mathbf{18}$ if $|e - e_{prev}| > 1e^{-6}$ for all $e_{prev} \in energies$ then 19 Append e to energies, v to states; $\mathbf{20}$ Break; $\mathbf{21}$ end $\mathbf{22}$ EndTry $\mathbf{23}$

// Skip this shift on failure

29 end
30 Step 3: Normalize Wavefunctions and Transform to u(r);
31 Set u_states ← Transform and normalize states;

Continue to the next shift ;

32 return (*energies*, *u_states*)

2.4 结果示例

2.4.1 打靶法计算结果

原子	量子数 n, l	能级 (单位: hartree)	原子	量子数 n, l	能级 (单位: hartree)
氢原子	n = 1, l = 0, 1s	-0.500000		n = 1, l = 0, 1s	-4.458247
	n = 2, l = 0, 2s	-0.125000		n = 2, l = 0, 2s	-1.115432
	n = 2, l = 1, 2p	-0.125000	锂原子	n = 2, l = 1, 2p	-1.122278
	n = 3, l = 0, 3s	-0.055556		n = 3, l = 0, 3s	-0.496256^{b}
	n = 3, l = 1, 3p	-0.055556^{a}		n = 3, l = 1, 3p	-0.498679
	n = 3, l = 2, 3d	-0.055556		n = 3, l = 2, 3d	-0.500262

^a 对于 n = 3 的三个态,指定了 **r_Max=60**,精度大幅提高,但下面图片为展现边界效应未替换 ^b 对于 n = 3 的三个态,指定了 **r_Max=60**,否则无法收敛,甚至边界发散

2.4.2 有限差分法计算结果

原子	量子数 n, l	能级 (单位: hartree)	原子	量子数 n, l	能级 (单位: hartree)
氢原子	n = 1, l = 0, 1s	-0.499993		n = 1, l = 0, 1s	-4.458266^{d}
	n = 2, l = 0, 2s	-0.125007		n = 2, l = 0, 2s	-1.115469
	n = 2, l = 1, 2p	-0.125003	锂原子	n = 2, l = 1, 2p	-1.122296
	n = 3, l = 0, 3s	-0.055556^{a}		n = 3, l = 0, 3s	-0.496337
	n = 3, l = 1, 3p	-0.031255^{b}		n=3, l=1, 3p	-0.280662^{e}
	n = 3, l = 2, 3d	-0.055529°		n=3, l=2, 3d	-0.500269^{f}

^a 在 r_Max=30 偏差过大,提升至 60

^b 实际上是 4p 态,但始终找不到正确的 3p,可能是窗口设置太小

^c 3d 态在 r_Max=30 表现尚好,因其极大值离核,边界效应不显著

^d使用 r_Max=30, j_Max=300, 表现良好

^e 实际上应该是 4p 态,但也始终找不到正确的 3p

f 提升至 j_Max=400 后与打靶法结果差距更小

2.4.3 输入与异常处理

图 8: 自定义参数输入与异常处理,新版本支持网格起止点 r_min 与 r_Max 的指定

2.4.4 使用 example 选项运行的示例

 (base) gilbert@Gilbert-YoungMacBook radial_schrodinger % python main.py - -example 	=====================================
求解hydrogen原子: n=1, l=0 使用 shooting方法	=====================================
2024-11-22 09:37:58,656 - INFO - NumExpr defaulting to 8 threads. 2024-11-22 09:37:59,247 - INFO - 初始化hydrogen原子求解器: n=1, l=0, 方法 =shooting 2024-11-22 09:38:03.102 python[3324:37418] +[IMKClient subclass]: chose I	能量本征值: -0.125000 Hartree 理论值: -0.125000 Hartree 相对误差: 0.000003%
2024-11-22 09:38:03.102 python[3324:37418] +[IMKInputSession subclass]: c hose IMKInputSession_Modern	
能量本征值: -0.500000 Hartree 理论值: -0.500000 Hartree 坦过混美: 0.0000013	 2024–11–22 09:38:12,891 – INFO – 初始化lithium原子求解器: n=1, l=0, 方法= shooting
相为 读差. 0.000001% ================================	能量本征值: -4.458247 Hartree 理论值: -4.458247 Hartree 相对误差: 0.000000%
=====================================	=====================================
能量本征值: -0.125000 Hartree 理论值: -0.125000 Hartree 扫动语: - 0.000000	2024-11-22 09:38:14,392 - INFO - 初始化hydrogen原子求解器: n=1, l=0, 方法 =shooting
伯內侯左: 0.000003%	—————————————————————————————————————

图 9: 运行示例的终端输出

图 11: 使用打靶法求解氢原子库仑势的 1s 态的收敛性分析,验证了 RK4 全局误差是四阶精度的

Hydrogen原子 (打靶法) 量子态: n=2, l=0 | 能量: E=-0.125000 Hartree

Lithium原子 (打靶法) 量子态: n=1, l=0 | 能量: E=-4.458247 Hartree

图 14: 使用有限差分法求解氢原子库仑势的 1s 态的收敛性分析,新版本非均匀细网格的数值稳定性有所下降

2.4.5 氢原子其它示例

图 15: 使用打靶法求解氢原子库仑势的 3s 态, r_Max=30 的选项已经有些捉襟见肘

图 16: 使用打靶法求解氢原子库仑势的 4s 态,指定 r_Max=60

图 17: 使用有限差分法求解氢原子库仑势的 4f 态,指定 r_Max=60

2.4.6 锂原子其它示例

图 19: 使用有限差分法求解锂原子局域势的 2p 态

图 20: 分别使用打靶法与有限差分法求解锂原子局域势的 3d 态,其中打靶法必须拓展 r_Max,否则无法收敛